Abstract

Platelet isoprostane 8-ISO-prostaglandin F2α (8-iso-PGF2α), a proaggregating molecule, is believed to derive from nonenzymatic oxidation of arachidonic acid. We hypothesized that NADPH is implicated in isoprostane formation and platelet activation. We studied 8-iso-PGF2α in platelets from 8 male patients with hereditary deficiency of gp91(phox), the catalytic subunit of NADPH oxidase, and 8 male controls. On stimulation, platelets from controls produced 8-iso-PGF2α, which was inhibited -8% by aspirin and -58% by a specific inhibitor of gp91(phox). Platelets from patients with gp91(phox) hereditary deficiency had normal thromboxane A(2) formation but marked 8-iso-PGF2α reduction compared with controls. In normal platelets incubated with a gp91(phox) inhibitor or with SQ29548, a thromboxane A(2)/isoprostane receptor inhibitor, platelet recruitment, an in vitro model of thrombus growth, was reduced by 44% and 64%, respectively; a lower effect (-17%) was seen with aspirin. Moreover, thrombus formation under shear stress (blood perfusion at the wall shear rate of 1500 s(-1)) was reduced in samples in which isoprostane formation was inhibited by NADPH oxidase inhibitors. In gp91(phox)-deficient patients, agonist-induced platelet aggregation was within the normal range, whereas platelet recruitment was reduced compared with controls. Incubation of platelets from gp91(phox)-deficient patients with 8-iso-PGF2α dose-dependently (1 to 100 pmol/L) increased platelet recruitment by mobilizing platelet Ca(2+) and activating gpIIb/IIIa; a further increase in platelet recruitment was detected by platelet coincubation with l-NAME, an inhibitor of NO synthase. This study provides the first evidence that platelet 8-iso-PGF2α maximally derives from gp91(phox) activation and contributes to platelet recruitment via activation of gpIIb/IIIa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.