Abstract

Somatic embryogenesis (SE) is a critical step leading to plant regeneration in tissue culture of many plant species. The objective of the present study was to analyze the inheritance of SE in cotton (Gossypium hirsutum L.) using leaf petioles as explants. A high embryogenic callus (HEC)—producing line, W10, was selected by petiole callus culture from a commercial Chinese cotton cultivar CRI24 and crossed with a non embryogenic line, TM-1 and a low embryogenic (LEC) commercial Chinese cotton cultivar, CRI12, respectively. The parental lines, F1 and F2 were grown in field conditions for sources of leaf petioles as explants. The F1 plants were similar to the HEC parent in embryogenic callus (EC) induction, indicating that high EC ability is dominant. The classical Mendelian analysis showed that the high EC ability in the HEC line W10 is controlled by two independent dominant genes with complementary effect, designated Ec 1 and Ec 2 , while the LEC line CRI12 contains one dominant gene Ec 2 . A joint segregation analysis confirmed that SE ability in cotton is controlled by two major genes with epistatic effects along with other polygenes. A SSR marker analysis identified three quantitative trait loci (QTLs) on two linkage groups, one of which harbored a major QTL (qEc1) which is assigned to the major gene Ec 1 . This qualitative and quantitative genetic study has provided an incentive to fine map the genes responsible for SE towards the isolation of the SE genes in cotton.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call