Abstract
Pheromone-responsive olfactory interneurons were studied to determine the extent to which their physiological and morphological properties complemented the behavior and peripheral olfactory neurobiology observed in hybrid male moths created by interbreeding two species of heliothine moth, Heliothis virescens and Heliothis subflexa. Complete recordings were made from a total of 33 neurons, and 16 projection neurons (PNs) were subsequently stained with a fluorescent dye. Stained PNs tuned to pheromonal odorants had dendritic arborizations restricted to one of four olfactory glomeruli that together constituted the macroglomerular complex (MGC). As in parental males, PNs tuned to (Z)-11-hexadecenal always had an arbor in the cumulus, the largest of the MGC glomeruli. Previous neurophysiological investigations revealed that PNs with dendritic arbors restricted to the dorso-medial glomerulus (DM) of the MGC responded specifically to either (Z)-9-tetradecenal (Z9–14:Ald; H. virescens males) or (Z)-9-hexadecenal (Z9–16:Ald; H. subflexa males). Hybrid males, which responded equally well in wind tunnel tests to blends containing either Z9–14:Ald or Z9–16:Ald, had DM PNs that responded to both odorants. PNs specific for a third compound, (Z)-11-hexadecenol, required by hybrid males for behavioral activity were localized to the antero-medial MGC glomerulus (AM). Thus, neuronal activity across the cumulus, DM and AM glomeruli represented an attractive blend in hybrid males. Neurons tuned to (Z)-11-hexadecenyl acetate and Z9–14:Ald were restricted to a fourth, ventro-medial glomerulus. The across-glomerular pattern of activity associated with attractive pheromone blends was most similar to that of H. subflexa males, signifying a dominant effect of H. subflexa genes. These results indicate that the behavioral phenotype of hybrid males can be linked to underlying central olfactory characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.