Abstract

AbstractThe inheritance of heading time of spring barley was studied in three extremely early genotypes IB, RL and ‘Mona’ (M), which is homozygous recessive for the early maturity ea8 (=eak) gene conferring extreme earliness under short daylengths and is relatively photoperiod insensitive, and five (GP, MA, PS, NU and BA) spring genotypes that are early to intermediate for heading time. Frequency distributions of F2 generations grown at Ouled Gnaou, Morocco (32°15′ N), an environment which maximizes differences between photoperiod‐insensitive and photoperiod‐sensitive genotypes, indicated that across populations many loci were segregating in a complex Mendelian manner. IB and RL were both homozygous recessive for the ea8 gene, which conferred an early heading time. RL had partially dominant alleles at second locus (Enea8), which enhanced its earliness. Recovery of only progeny within the parental range of genotypes for heading time from the crosses of RL/M and IB/M suggests that numerous loci remained suppressed, perhaps latent, given their diverse parentage. The ea8 recessive homozygote in RL suppressed another unidentified locus which, when homozygous recessive in the absence of the ea8 recessive homozygote, conferred extreme earliness in one short daylength environment (Ouled Gnaou, Morocco) but was undetected in another environment (Davis, CA, USA). Epistatic gene action and genotype × environment effects strongly influenced heading time. In addition to a genetic system consisting of single‐locus recessive homozygotes conferring photoperiod insensitivity, a second genetic system, based on dominant alleles at one or a few loci, derived from the early heading Finnish landrace ‘Olli’, also confers extremely early heading time under short daylengths and relative photoperiod insensitivity in the genotype GP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.