Abstract

Competence for leaf disc regeneration, anther culture, and protoplast culture was examined in the parental, F1, and F2 generations of a population of the diploid, cultivated, primitive potato, S. phureja (2n=2x=24). The parental pair consisted of AM3-8, an anther culture derived homozygous diploid, and NBP2, a heterozygous, field selected line. AM3-8 produced embryos in anther culture, and shoots on cultured leaf discs, but its cells did not divide after protoplast isolation. Cells of NBP2 divided to form calli and shoots in protoplast culture, but the clone did not respond to anther culture or leaf disc regeneration. All the individual plants in the F1 generation were responsive to both anther and protoplast culture; however, there was segregation for the ability to regenerate shoots from leaf discs. The F2 population, the result of a sib-cross, segregated for all three tissue culture competencies. Segregation data fit a one gene model for anther culture competence with the homozygous dominant genotype expressing the highest response, the heterozygote resulting in a marginal response, and the homozygous recessive resulting in no response. A two-gene model applied to the protoplast culture data, with a dominant allele at both loci required for division to occur after protoplast isolation. Leaf disc regeneration data could only be explained by a two gene model with recessive alleles at each locus required for the highest response, a dominant allele at either of the loci resulting in a marginal response, and dominant alleles at both loci resulting in no response. No significant correlation was found among these traits, implying three separate genetic mechanisms which segregate independently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call