Abstract

Carotenoids have a wide range of human health benefits. Yellow-fleshed tetraploid potato (Solanum tuberosum) cultivars have more than twice the concentration of carotenoids as white-fleshed cultivars. However, carotenoid concentrations in some diploid potatoes have been reported to be up to 13 times higher than in ‘Yukon Gold’, the most popular yellow-fleshed potato cultivar grown in the United States, and up to 22 times higher than in white-fleshed potatoes. The purpose of this study was to determine the feasibility of using these high-carotenoid diploids to develop high-carotenoid tetraploid germplasm. Three diploid clones with high (dark yellow-flesh), moderate (moderate yellow-flesh), and low (white–cream-flesh) carotenoid levels that produced 2n pollen were crossed with a light yellow-fleshed tetraploid advanced breeding selection to determine the inheritance of carotenoid content. Twenty-six to 43 progeny from these three 4x-2x families were grown in a replicated field experiment in Presque Isle, ME, for 2 years. After harvest, carotenoids were extracted and quantified by high-performance liquid chromatography in 13 to 14 randomly selected clones from each family; however, flesh color was scored as white or yellow in all progeny. A continuous distribution of carotenoid concentration with high- and low-carotenoid segregants was observed in all three families. There were no significant differences among these three families for individual or total carotenoid concentrations; however, there were significant differences among clones within families. Broad-sense heritability estimates were high for total carotenoid (0.81), lutein (0.77), zeaxanthin (0.73), and the lycopene beta-cyclase pathway carotenoids (0.73); moderate for neoxanthin (0.42); and low for violaxanthin (0.21) and antheraxanthin (0.13). Based on flesh color segregation, the two yellow-fleshed diploid parents were heterozygous for the Chy2 allele governing yellow-flesh and produced 2n gametes by a second division restitution mechanism. It appears that selection for high-carotenoid tetraploid germplasm can be made from within any family with at least one yellow-fleshed parent. Selections will have to be made on an individual clonal basis rather than on a family basis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call