Abstract
BackgroundInterspecific hybridization has proven to be a potentially valuable technique for generating de novo lager yeast strains that possess diverse and improved traits compared to their parent strains. To further enhance the value of hybridization for strain development, it would be desirable to combine phenotypic traits from more than two parent strains, as well as remove unwanted traits from hybrids. One such trait, that has limited the industrial use of de novo lager yeast hybrids, is their inherent tendency to produce phenolic off-flavours; an undesirable trait inherited from the Saccharomyces eubayanus parent. Trait removal and the addition of traits from a third strain could be achieved through sporulation and meiotic recombination or further mating. However, interspecies hybrids tend to be sterile, which impedes this opportunity.ResultsHere we generated a set of five hybrids from three different parent strains, two of which contained DNA from all three parent strains. These hybrids were constructed with fertile allotetraploid intermediates, which were capable of efficient sporulation. We used these eight brewing strains to examine two brewing-relevant phenotypes: stress tolerance and phenolic off-flavour formation. Lipidomics and multivariate analysis revealed links between several lipid species and the ability to ferment in low temperatures and high ethanol concentrations. Unsaturated fatty acids, such as oleic acid, and ergosterol were shown to positively influence growth at high ethanol concentrations. The ability to produce phenolic off-flavours was also successfully removed from one of the hybrids, Hybrid T2, through meiotic segregation. The potential application of these strains in industrial fermentations was demonstrated in wort fermentations, which revealed that the meiotic segregant Hybrid T2 not only didn’t produce any phenolic off-flavours, but also reached the highest ethanol concentration and consumed the most maltotriose.ConclusionsOur study demonstrates the possibility of constructing complex yeast hybrids that possess traits that are relevant to industrial lager beer fermentation and that are derived from several parent strains. Yeast lipid composition was also shown to have a central role in determining ethanol and cold tolerance in brewing strains.
Highlights
Interspecific hybridization has proven to be a potentially valuable technique for generating de novo lager yeast strains that possess diverse and improved traits compared to their parent strains
We demonstrate the possibility of using an allotetraploid interspecific hybrid as an intermediate to create a phenolic off-flavour (POF)− lager hybrid with DNA from three parent strains, and we use a set of brewing yeast hybrids to reveal that unsaturated fatty acids and ergosterol are associated with good fermentation performance at low temperatures and high ethanol concentrations
Recent studies have revealed that the creation of de novo lager yeast hybrids has the potential to considerably increase the genetic and phenotypic diversity of lager yeast strains available to the brewing industry
Summary
Interspecific hybridization has proven to be a potentially valuable technique for generating de novo lager yeast strains that possess diverse and improved traits compared to their parent strains. In order to further improve the potential of hybridization for strain development, it would be desirable to combine phenotypic traits from more than two parent strains, as well as remove unwanted traits from the hybrid. This could be achieved through sporulation, meiotic recombination and further mating of the hybrid. Allotetraploid interspecific hybrids may undergo meiosis, during which recombination may give rise to crossovers and gene conversions [10] This in turn causes phenotypic variation, as traits may get strengthened, weakened or even removed [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.