Abstract

BackgroundEnvironmental challenges may affect both the exposed individuals and their offspring. We investigated possible adaptive aspects of such cross-generation transmissions, and hypothesized that chronic unpredictable food access would cause chickens to show a more conservative feeding strategy and to be more dominant, and that these adaptations would be transmitted to the offspring.Methodology/Principal FindingsParents were raised in an unpredictable (UL) or in predictable diurnal light rhythm (PL, 12∶12 h light∶dark). In a foraging test, UL birds pecked more at freely available, rather than at hidden and more attractive food, compared to birds from the PL group. Female offspring of UL birds, raised in predictable light conditions without parental contact, showed a similar foraging behavior, differing from offspring of PL birds. Furthermore, adult offspring of UL birds performed more food pecks in a dominance test, showed a higher preference for high energy food, survived better, and were heavier than offspring of PL parents. Using cDNA microarrays, we found that the differential brain gene expression caused by the challenge was mirrored in the offspring. In particular, several immunoglobulin genes seemed to be affected similarly in both UL parents and their offspring. Estradiol levels were significantly higher in egg yolk from UL birds, suggesting one possible mechanism for these effects.Conclusions/SignificanceOur findings suggest that unpredictable food access caused seemingly adaptive responses in feeding behavior, which may have been transmitted to the offspring by means of epigenetic mechanisms, including regulation of immune genes. This may have prepared the offspring for coping with an unpredictable environment.

Highlights

  • Environmental challenges force animals to adjust their behaviour and physiology in order to cope

  • We have previously shown that offspring of chickens raised in stressful conditions have an affected phenotype and brain gene expression which mirrors that of their parents [7], supporting other studies which have shown that offspring phenotypes may be affected by parental experiences preceding pregnancy, and even persist over more than one generation [8,9,10]

  • We further hypothesized that such alterations in behavior, and the associated modifications in brain gene expression profiles, would be transmitted to the offspring, thereby suggestively prepare the offspring for the parental environment. To test these hypotheses we studied the behavior and brain gene expression in chickens raised in an unpredictable light rhythm, and their offspring, which were raised in a standard, predictable environment

Read more

Summary

Introduction

Environmental challenges force animals to adjust their behaviour and physiology in order to cope. This affects their phenotype, and may be associated with epigenetic modifications of gene expression patterns, both of which may be transmitted across generations. Lack of maternal care in rats causes a significant effect on brain gene expression and stress related behaviour later in life [1]. We have previously shown that offspring of chickens raised in stressful conditions have an affected phenotype and brain gene expression which mirrors that of their parents [7], supporting other studies which have shown that offspring phenotypes may be affected by parental experiences preceding pregnancy, and even persist over more than one generation [8,9,10]. We investigated possible adaptive aspects of such cross-generation transmissions, and hypothesized that chronic unpredictable food access would cause chickens to show a more conservative feeding strategy and to be more dominant, and that these adaptations would be transmitted to the offspring

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.