Abstract

Gummy stem blight (GSB), a common disease of all major cucurbits, is caused by the fungus Didymella bryoniae. It results in serious losses in fruit production, which in cucumber can be up to 80% or more. Because the severity of the disease varies from season to season and also because of the harm to the environment caused by using pesticides to control the disease, the best method for overcoming GSB in cucumber is to develop more resistant cultivars by molecular breeding. There are no reports on molecular markers for use in breeding GSB resistance and no studies on chromosomal mapping of resistance. In this paper, a set of 160 F9 recombinant inbred lines (RILs) were derived from the cross between the wild-type GSB-resistant cucumber accession PI 183967 and the cultivated GSB-susceptible accession 931. A total of 2112 pairs of SSR primers were used to study the inheritance of GSB resistance and to detect quantitative trait loci (QTLs) conferring resistance in the cucumber stem. Genetic analysis indicated that resistance to GSB in PI 183967 was quantitative and mainly governed by three pairs of additive epistatic major genes. Five QTLs, gsb-s1.1, gsb-s2.1, gsb-s6.1, gsb-s6.2, and gsb-s6.3, for resistance to GSB in cucumber stems were detected. The loci gsb-s1.1 and gsb-s2.1 with phenotypic variations of 8.7 and 6.7% were mapped to chromosomes (Chr.) 1 and 2, respectively. The loci gsb-s6.1, gsb-s6.2, and gsb-s6.3 were linked on Chr.6. Locus gsb-s6.2 accounted for the highest phenotypic variation of 22.7% and was flanked by markers SSR04083 and SSR02940 with genetic distances of 5.0 and 1.8 cM, respectively. There were 117 candidate genes predicted between SSR04083 and SSR02940, of which 14 were related to disease resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call