Abstract

Cucumber mosaic virus (CMV) infects a wide variety of crop plants and in tomato (Lycopersicon esculentum Mill.) causes significant economic losses in many growing regions, particularly the Mediterranean. The objective of the present study was to identify the number and map locations of genes controlling resistance to CMV in breeding lines (BC1–inbreds) derived from the related wild species L. chilense. These lines also carried the gene Tm-2 a for resistance to ToMV, which facilitated the interpretation of disease symptoms. The segregation for CMV resistance in the BC2F1 and BC2F2 generations, following mechanical inoculation with subgroup-I isolates, was consistent with expectations for a single dominant gene, for which the symbol Cmr (cucumber mosaic resistance) was given. Resistant and susceptible BC1-inbreds were analyzed with RFLP and isozyme markers to identify genomic regions introgressed from L. chilense. The only L. chilense-specific markers found were on chromosome 12; some resistant lines contained a single introgression comprising the entire short arm and part of the long arm of this chromosome, while others contained a recombinant derivative of this introgression. The chromosome 12 markers were significantly associated with CMV resistance in both qualitative and quantitative models of inheritance. The qualitative analysis, however, demonstrated that CMV resistance was not expressed as a reliable monogenic character, suggesting a lack of penetrance, significant environmental effects, or the existence of additional (undetected) resistance factors. In the quantitative analysis, the marker interval TG68 – CT79 showed the most significant association with CMV resistance. No association between CMV resistance and the Tm-2 a gene was observed. These breeding lines are potentially useful sources of CMV resistance for tomato improvement, in which context knowledge of the map location of Cmr should accelerate introgression by marker-assisted selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call