Abstract
In this paper we report for the first time on the emissive behavior of two polyaniline (PANI) nanoparticle systems produced via oxidative chemical polymerization in the presence of either poly(vinyl alcohol) (PVA) or chitosan as polymeric stabilizers in water. The emission from PANI nanoparticles is irreversibly quenched by an increase of pH of the suspending medium from acid to neutral (chitosan–PANI) or alkaline (PVA–PANI). Conversely, PANI nanorods synthesized in the same conditions of the above, but in presence of poly(N-vinyl pyrrolidone), is not emissive at any pH. The role of the polymeric surfactant as a soft template is key in controlling the morphology and the properties of the obtained PANI dispersions. FTIR, UV–Vis absorption and photoluminescence excitation (PLE) spectra studies suggest that the emissive properties are related to the establishment of strong, non-covalent interactions between nanoscalar PANI particles and the polymeric surfactant at the pH of synthesis. Morphology examination of the three systems, by both dynamic light scattering (DLS) and Transmission Electron Microscopy (TEM), reveal that photoluminescence is associated to the presence of a genuinely 3D nanoscalar morphology, together with an ordered disposition of PANI chains into aligned crystal planes. Concomitant to the irreversible quenching of the emission signal with increasing pH, there is an evolution of the morphology leading to particle coalescence, coarsening and ultimately phase-separation, with consequent modification of PANI–polymeric surfactant interactions, PANI chains supra-molecular organization and optical properties of the PANI nanoparticles dispersion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.