Abstract

Strong evidence indicates that non-human primates possess a numerical representation system, but the inherent nature of that system is still debated. Two cognitive mechanisms have been proposed to account for non-human primate numerical performance: (1) a discrete object-file system limited to quantities <4, and (2) an analog system which represents quantities comparatively but is limited by the ratio between two quantities. To test the underlying nature of non-human primate quantification, we asked eight experiment-naive olive baboons (Papio anubis) to discriminate between number pairs containing small (<4), large (>4), or span (small vs. large) numbers of food items presented simultaneously or sequentially. The prediction from the object-file hypothesis is that baboons will only accurately choose the larger quantity in small pairs, but not large or span pairs. Conversely, the analog system predicts that baboons will be successful with all numbers, and that success will be dependent on numerical ratio. We found that baboons successfully discriminated all pair types at above chance levels. In addition, performance significantly correlated with the ratio between the numerical values. Although performance was better for simultaneous trials than sequential trials, evidence favoring analog numerical representation emerged from both conditions, and was present even in the first exposure to number pairs. Together, these data favor the interpretation that a single, coherent analog representation system underlies spontaneous quantitative abilities in primates.

Highlights

  • From Euclid, who said, “The laws of nature are but the mathematical thoughts of God,” to the modern mathematical scholar Paul Dirac who stated, “If there is a God, he’s a great mathematician,” great thinkers have often associated abstract numerical thought with the divine

  • These data indicate that animals can spontaneously discriminate quantities presented simultaneously and sequentially. These monkeys were successful at choosing the larger quantity for small pairs [binomial test, Pearl (62/80 trials), p < 0.001, Ursala (63/85 trials), p < 0.001], span pairs [Pearl (64/80 trials), p < 0.001, Ursala (85/102 trials), p < 0.001], and large pairs [Pearl (53/81 trials), p < 0.01, Ursala (57/95 trials), p < 0.05]. This above-chance performance for small, span, and large quantity pairs supports the conclusion that olive baboons spontaneously use the analog numerical system to solve this task

  • Eight olive baboons without any prior experience discriminating quantities in experiments were tested on their ability to spontaneously discriminate quantities of food items

Read more

Summary

Introduction

From Euclid, who said, “The laws of nature are but the mathematical thoughts of God,” to the modern mathematical scholar Paul Dirac who stated, “If there is a God, he’s a great mathematician,” great thinkers have often associated abstract numerical thought with the divine. The precise nature of the representations underlying infant vs animal quantity judgments has been a subject of discussion in the numerical cognition literature. Non-linguistic numerical cognition in human infants is hypothesized to involve two different mechanisms: a precise object-file system and an analog magnitude system. The objectfile system is thought to be an aspect of working memory, which individuates, enumerates, and tracks objects, and so, is inherently capable of tracking the number of objects (Trick and Pylyshyn, 1993, 1994). As working memory is limited to tracking three or four objects, the signature of the object-file system as a number representation system is the failure of an individual to discriminate between two quantities if at least one of those quantities is larger than three (or four). The magnitudes are psychologically spaced either logarithmically or linearly with scalar variability, and because of this, the numerical ratio (and not the absolute numerical value) is the critical variable that determines whether two quantities can be discriminated in the analog system

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call