Abstract

Oxidation reaction is the typical thermal runaway reaction, and the reaction of 1, 4-dioldiacetate-2-Butene oxidized by ozone was investigated in this study. Firstly, the thermal hazards of the oxidative exothermic reactions were identified and evaluated combined process risk assessment method. The Qualitative Assessment for Inherently Safer Design (QAISD) was used to identify the risk of the reaction process. Meanwhile, the Reaction Calorimeter (RC1e) was used to obtain the thermal properties of the oxidation reaction. Then the inherent safer designs (ISD) were proposed according to the risk assessment results to increase the level of safety of chemical industry technique. 1) ISD I: reaction temperature was improved to –5 °C, and ventilation rate was improved to 200 L•h−1. 2) ISDII: using a tubular reactor as reaction vessel. The results indicated that the severity of the reaction hazard was reduced by 43%, and safety was improved significantly via two ISDs. Moreover, the inherent safety level of the reaction was increased by 63% and 43.4% via ISD Iand II, respectively. The reaction process get closer to inherent safety theories of “minimize,” “substitute,” and “moderate”.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.