Abstract
Porous glasses produced through melt-quenching of some selective metal organic frameworks like Zeolitic Imidazolate Framework-62 (ZIF-62) and ZIF-4 belong to the advanced functional materials because of their inherent porosity, ease of processing, high gas adsorption capacity and gas separation selectivity. We have delineated thermal induced modifications in the porosity features (pore size, size-distribution and pore density) of crystalline ZIF-62 from room temperature (RT) to its melt-state (> melting point, Tm) followed by its quenching, back to RT, carrying out the depth sensitive positron annihilation lifetime spectroscopy (PALS) measurements in-situ at varying temperatures (RT−Tm). On heating under vacuum, the pores' size as well as size-distribution of crystalline ZIF-62 increases up to ∼473 K as a consequence of removal of entrapped solvent molecules and nonuniform thermal expansion. At higher temperatures (∼473 −573 K), a reduction in pores’ size and size-distribution is observed due to the loss of long range ordering and volume collapse. On melting, ZIF-62 turns into a porous liquid having ∼1.4 times larger pores compared to its crystalline form. The quenching of this porous melt is fully irreversible, and results in the formation of a porous glass having the pores larger than its crystalline counterpart. The in-situ PALS investigation provides the first experimental evidence of inherent porosity in ZIF-62 melt existing at high temperature that has been predicted before through molecular dynamics simulation of the ZIFs-based melts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.