Abstract

Instrumentation measuring hyperspectral particle attenuation and absorption was used to assess particle concentration and size, chlorophyll, and spectral characteristics as a function of depth in four temperate lakes of different trophy. Partitioning the absorption coefficient permitted us to analyze properties of phytoplankton absorption as a function of ambient illumination and hydrographic conditions. Stratification was found to be a controlling factor in the size distribution and concentration of particles. Bloom cycles (chlorophyll > 10 mg m−3) were observed to evolve over several weeks but on occasion did change rapidly. Total chlorophyll concentration revealed the majority of the lakes did not follow the typical seasonal succession of biomass associated with temperate waters. Particle and chlorophyll concentration maxima did not always coincide, cautioning the use of chlorophyll a as a surrogate for algal biomass. Phytoplankton near the base of the euphotic zone, including a deep chlorophyll maximum in an oligotrophic system, were found to exhibit significant chromatic adaptation. Unique absorption peaks identified the ubiquitous presence of cyanobacteria in all four lakes. Finally, particle resuspension and possible nepheloid layers were observed in the two smallest lakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.