Abstract

We consider the propagation of nonlinear sound waves in a perfect fluid at rest. By employing the Riemann wave equation of nonlinear acoustics in one spatial dimension, it is shown that waves carrying a constant density perturbation at their tails produce an acoustic analogue of gravitational wave memory. For the acoustic memory, which is in general nonlinear, the nonlinearity of the effective spacetime dynamics is not due to the Einstein equations, but due to the nonlinearity of the perfect fluid equations. For concreteness, we employ a box-trapped Bose-Einstein condensate, and suggest an experimental protocol to observe acoustic gravitational wave memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call