Abstract

Mitochondrial translation is essential to maintain mitochondrial function and energy production. Mutations in genes associated with mitochondrial translation cause several developmental disorders, and immune dysfunction is observed in many such patients. Besides genetic mutations, several antibiotics targeting bacterial ribosomes are well-established to inhibit mitochondrial translation. However, the effect of such antibiotics on different immune cells is not fully understood. Here, we addressed the differential effect of mitochondrial translation inhibition on different subsets of helper T cells (Th) of mice and humans. Inhibition of mitochondrial translation reduced the levels of mitochondrially encoded electron transport chain subunits without affecting their nuclear-encoded counterparts. As a result, mitochondrial oxygen consumption reduced dramatically, but mitochondrial mass was unaffected. Most importantly, we show that inhibition of mitochondrial translation induced apoptosis, specifically in Th2 cells. This increase in apoptosis was associated with higher expression of Bim and Puma, two activators of the intrinsic pathway of apoptosis. We propose that this difference in the sensitivity of Th1 and Th2 cells to mitochondrial translation inhibition reflects the intrinsic metabolic demands of these subtypes. Though Th1 and Th2 cells exhibit similar levels of oxidative phosphorylation, Th1 cells exhibit higher levels of aerobic glycolysis than Th2 cells. Moreover, Th1 cells are more sensitive to the inhibition of glycolysis, while higher concentrations of glycolysis inhibitor 2-deoxyglucose are required to induce cell death in the Th2 lineage. These observations reveal that selection of metabolic pathways for substrate utilization during differentiation of Th1 and Th2 lineages is a fundamental process conserved across species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.