Abstract
The purpose of the paper is to use fundamental theoretical and experimental elements of electrodynamics for deriving properties of radiation fields and of bound fields. A wide variety of examples prove that radiation fields and bound fields do not represent the same physical object. This conclusion is new. Some examples belong to the classical domain and others belong to the quantum domain. Consequences of this outcome affect several physical issues. In particular, these fields should be treated separately. For this reason, changes must be introduced to the present form of the fields’ Lagrangian density of quantum electrodynamics, where the fields tensor Fuv is a sum of bound and radiation fields. Since the Lagrangian density is a key element of the theory, its revision may entail changes of other specific issues. The recent failure of quantum electrodynamics to explain the electron and the muon data of the proton charge radius supports this conclusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.