Abstract
We give lower bounds on the complexity of certain Datalog queries. Our notion of complexity applies to compile-time optimization techniques for Datalog; thus, our results indicate limitations of these techniques. The main new tool is linear first-order formulas, whose depth (respectively, number of variables) matches the sequential (respectively, parallel) complexity of Datalog programs. We define a combinatorial game (a variant of Ehrenfeucht–Fraı̈ssé games) that can be used to prove nonexpressibility by linear formulas. We thus obtain lower bounds for the sequential and parallel complexity of Datalog queries. We prove syntactically tight versions of our results, by exploiting uniformity and invariance properties of Datalog queries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.