Abstract

This study was performed (1) to provide a comparison of the genotoxin effects of inhaled radon and radon progeny, referred to as radon in this paper, among three species of rodents: Wistar rats, Syrian hamsters, and Chinese hamsters; (2) to determine if initial chromosome damage was related to the risk of induction of lung cancer; and (3) to evaluate the tissue repair and long-term presence of cytogenetic damage in respiratory tract cells. These species were selected because Syrian hamsters are very resistant to radon induction of lung cancer and Wistar rats are sensitive; no literature is available on the in vivo effects of radon in the Chinese hamster. Exposure-response relationships were established for the rats and Syrian hamsters while the Chinese hamsters received a single exposure of radon. At 4 h (0.2 days), 15 days, and 30 days after the highest WLM exposure to radon, Wistar rats, Chinese hamsters, and Syrian hamsters were killed, and lung fibroblasts were isolated and grown in culture to determine the frequency of induced micronuclei. Animals at each level of exposure showed an increase in the frequency of micronuclei relative to that in controls ( P < 0.05). The exposure-response relationship data for rats and Syrian hamsters killed 0.2 days after the end of exposure were fit to linear equations (micronuclei/1000 binucleated cells = 15.5±14.4+0.53±0.06 WLM and 38.3±15.1+0.80±0.08 WLM, respectively). For the single exposure level used (496 WLM) in Chinese hamsters killed at 0.2 days after exposure, the frequency of micronuclei/1000 binucleated cells/WLM was 1.83±0.02. A comparison of the sensitivity for induction of micronuclei/WLM illustrated that Chinese hamsters were three times more sensitive than rats. The Syrian hamsters also showed a significantly elevated response ( P < 0.05) relative to rats. These data suggest that initial chromosome damage is not the major factor responsible for the high rate of radon-induced cancer in rats relative to Syrian hamsters. The frequency of micronuclei in radon-exposed rats, Syrian hamsters, and Chinese hamsters significantly decreased ( P < 0.05) as a function of time after the exposure. The rate of loss of damaged cells from the lung was greatest in the Chinese hamsters, followed by Wistar rats and Syrian hamsters, respectively. Our experiments demonstrated that the mammalian lung fibroblast/micronucleus method has the potential to (1) detect species differences in the induction of in vivo genotoxic damage in the lungs by inhaled environmentalal agents; (2) evaluate exposure-response relationships for in vivo induction of genetic damage; and (3) determine the persistence in vivo of preclastogenic and premutagenic lesions in cell populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.