Abstract
Currently, dual- or triple-drug combinations comprising different vasodilators are the mainstay for the treatment of pulmonary arterial hypertension (PAH). However, the patient outcome continues to be disappointing because the existing combination therapy cannot restrain progression of the disease. Previously, we have shown that when given as a monotherapy, long-acting inhaled formulations of sildenafil (a phosphodiesterase-5 inhibitor) and rosiglitazone (a peroxisome proliferator receptor-γ agonist) ameliorate PAH in rats. Thus, with a goal to develop a new combination therapy, we prepared and characterized poly(lactic-co-glycolic acid) (PLGA)-based long-acting inhalable particles of sildenafil and rosiglitazone. We then assessed the efficacy of the combinations of sildenafil and rosiglitazone, given in plain forms or as PLGA particles, in reducing mean pulmonary arterial pressure (mPAP) and improving pulmonary arterial remodeling and right ventricular hypertrophy (RVH) in Sugen 5416 plus hypoxia-induced PAH rats. After intratracheal administration of the formulations, we catheterized the rats and measured mPAP, cardiac output, total pulmonary resistance, and RVH. We also conducted morphometric studies using lung tissue samples and assessed the degree of muscularization, the arterial medial wall thickening, and the extent of collagen deposition. Compared with the plain drugs, given via the pulmonary or oral route as a single or dual combination, PLGA particles of the drugs, although given at a longer dosing interval compared with the plain drugs, caused more pronounced reduction in mPAP without affecting mean systemic pressure, improved cardiac function, slowed down right heart remodeling, and reduced arterial muscularization. Overall, PLGA particles of sildenafil and rosiglitazone, given as an inhaled combination, could be a viable alternative to currently available vasodilator-based combination therapy for PAH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Lung Cellular and Molecular Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.