Abstract

In the present study, the feasibility of delivering anticancer drugs via metered dose inhaler (MDI) was demonstrated using methotrexate (MTX) as a model anticancer drug. MDI formulations of MTX were prepared using hydrofluoroalkane-134a containing 0.67% MTX and 10% ethyl alcohol. The particle size of MTX was reduced by cryo milling with or without a surfactant (Pluronic F77) and the milled drug was employed for MDI formulations, which were subsequently evaluated for their medication delivery, mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD). Further, the efficacy of aerosolized MTX was evaluated by determining the in-vitro cytotoxicity of MTX against HL-60 cells using a six-stage viable impactor and the induction of apoptosis in HL-60 cells by acridine orange staining. Our results indicate that MTX aerosols having an MMAD varying between 2.2 and 3.2 microm (GSD 2.6-3.7) with a respirable fraction varying between 14.2 and 17.1% could be obtained by using MTX, which was cryo milled either alone or in combination with Pluronic F77. Exposure of HL-60 cells plated in third, fourth, fifth, and sixth stages of viable impactor to two actuations of MDI showed a cell kill of greater than 50%. Further, aerosolized MTX was found to induce apoptosis in HL-60 cells, as assessed by the morphological examination of the cells with fluorescent and confocal microscopy. Our results demonstrate that it is possible to deliver cytotoxic concentrations of MTX in an in vitro system simulating the lower respiratory tract (by using a six-stage viable impactor) via MDI and the cytotoxicity of the aerosolized MTX could be further improved by the optimization of the aerodynamic size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call