Abstract

The purpose of this study was to determine the anticancer efficacy of 1,1-bis (3'-indolyl)-1-(p-biphenyl) methane (DIM-C-pPhC₆H₅) by inhalation delivery alone and in combination with i.v. docetaxel in a murine model for lung cancer. An aqueous DIM-C-pPhC₆H₅ formulation was characterized for its aerodynamic properties. Tumor-bearing athymic nude mice were exposed to nebulized DIM-C-pPhC₆H₅, docetaxel, or combination (DIM-C-pPhC₆H₅ plus docetaxel) using a nose-only exposure technique. The aerodynamic properties included mass median aerodynamic diameter of 1.8 ± 0.3 μm and geometric SD of 2.31 ± 0.02. Lung weight reduction in mice treated with the drug combination was 64% compared with 40% and 47% in mice treated with DIM-C-pPhC₆H₅ aerosol and docetaxel alone, respectively. Combination treatment decreased expression of Akt, cyclin D1, survivin, Mcl-1, NF-κB, IκBα, phospho-IκBα, and vascular endothelial growth factor (VEGF) and increased expression of c-Jun NH₂-terminal kinase 2 and Bad compared with tumors collected from single-agent treatment and control groups. DNA fragmentation was also enhanced in mice treated with the drug combination compared with docetaxel or DIM-C-pPhC₆H₅ alone. Combination treatment decreased expressions of VEGF and CD31 compared with single-agent treated and control groups. These results suggest that DIM-C-pPhC₆H₅ aerosol enhanced the anticancer activity of docetaxel in a lung cancer model by activating multiple signaling pathways. The study provides evidence that DIM-C-pPhC₆H₅ can be used alone or in combination with other drugs for the treatment of lung cancer using the inhalation delivery approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call