Abstract

Global spread of coronavirus disease-19 (COVID-19) is placing an unprecedented pressure on the environment and health. In this study, a new perspective is proposed to assess the inhalation bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 for people with various lung health conditions. In vitro bioaccessibility (IVBA) was measured using modified epithelial lung fluids simulating the extracellular environment of patients with severe and mild lung inflammation. The average PAH IVBA in PM2.5 of 24.5 ± 4.52% under healthy conditions increased (p = 0.06) to 28.6 ± 3.17% and significantly (p < 0.05) to 32.3 ± 5.32% under mild and severe lung inflammation conditions. A mechanistic study showed that lung inflammation decreased the critical micelle concentrations of main pulmonary surfactants (i.e., from 67.8 (for dipalmitoyl phosphatidylcholine) and 53.3 mg/L (for bovine serum albumin) to 44.5 mg/L) and promoted the formation of micelles, which enhanced the solubilization and competitive desorption of PAHs from PM2.5 in the lung fluids. In addition, risk assessment considering different IVBA values suggested that PAH contamination levels in PM2.5, which were safe for healthy people, may not be acceptable for patients with lung inflammation. Because of the large number of COVID-19 infections, and the fact that some survivors of COVID-19 were observed to still show symptoms of interstitial lung inflammation, the finding here can provide important implications for both the scientific community and policy makers in addressing health risk and air pollution control during the COVID-19 outbreak.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call