Abstract
Local lung microbiota is closely associated with lung tumorigenesis and therapeutic response. It is found that lung commensal microbes induce chemoresistance in lung cancer by directly inactivating therapeutic drugs via biotransformation. Accordingly, an inhalable microbial capsular polysaccharide (CP)-camouflaged gallium-polyphenol metal-organic network (MON) is designed to eliminate lung microbiota and thereby abrogate microbe-induced chemoresistance. As a substitute for iron uptake, Ga3+ released from MON acts as a "Trojan horse" to disrupt bacterial iron respiration, effectively inactivating multiple microbes. Moreover, CP cloaks endow MON with reduced immune clearance by masquerading as normal host-tissue molecules, significantly increasing residence time in lung tissue for enhanced antimicrobial efficacy. In multiple lung cancer mice models, microbe-induced drug degradation is remarkably inhibited when drugs are delivered by antimicrobial MON. Tumor growth is sufficiently suppressed and mouse survival is prolonged. Ourwork develops a novel microbiota-depleted nano-strategy to overcome chemoresistance in lung cancer by inhibiting local microbial inactivation of therapeutic drugs. This article is protected by copyright. All rights reserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.