Abstract

The disposal of plastics and metal-derived compounds results in the contamination of the environment with nano/microparticles, leading to the exposure of various organisms to these harmful particles. However, the impacts of these particles on pollinating insects, which provide relevant ecosystem services, are not well understood. The aim of this study was to assess the effects of microscopic particles on the tropical pollinator Partamona helleri (Apinae: Meliponini), specifically evaluating the toxicity of plastic microparticles (polystyrene – PS, and polyethylene terephthalate – PET) and nanoparticles of a metal oxide (titanium dioxide – TiO2) via larval ingestion by bees reared in vitro. The survival rate of P. helleri larvae was not affected by the ingestion of particles of PS (500 ng/bee), PET (500 ng/bee), or TiO2 (10 μg/bee) compared to the non-treated diet (control or diet without the particles). Adults derived from treated larvae had increased body weight compared to the control, and the walking behavior of adults was altered by the ingestion of particles. Adults that ingested PET or TiO2 as larvae tended to rest for a longer time and interact more with other bees than the control. Hemocyte counts also changed, with a shift in the proportion of plasmatocytes and prohemocytes in treated individuals. Our findings suggest that even levels considered low for honey bees of exposure to plastic microparticles or metal nanoparticles can harm the health and behavior of stingless bees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.