Abstract
Post-translational modifications (PTMs) on histone are highly correlated with genetic and epigenetic regulation of gene expression from chromatin. Mass spectrometry (MS) has developed to be an optimal tool for the identification and quantification of histone PTMs. Derivatization of histones with chemicals such as propionic anhydride, N-hydroxysuccinimide ester (NHS-propionate) has been widely used in histone PTMs analysis in bottom-up MS strategy, which requires high purity for histone samples. However, biological samples are not always prepared with high purity, containing detergents or other interferences in most cases. As an alternative approach, an adaptation of in gel derivatization method, termed In-gel NHS, is utilized for a broader application in histone PTMs analysis and it is shown to be a more time-saving preparation method.The proposed method was optimized for a better derivatization efficiency and displayed high reproducibility, indicating quantification of histone PTMs based on In-gel NHS was achievable. Without any traditional fussy histone purification procedures, we succeeded to quantitatively profile the histone PTMs from Arabidopsis with selective knock down of CLF (clf-29) and the original parental (col) with In-gel NHS method in a rapid way, which indicated the high specificity of CLF on H3K27me3 in Arabidopsis. In-gel NHS quantification results also suggest distinctive histone modification patterns in plants, which is invaluable foundation for future studies on histone modifications in plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.