Abstract

AbstractInGaP QDs overcoated with several monolayers of ZnS are covalently bound to chitosan to address the challenges of developing highly biologically stable and fluorescent nanoparticle probes for deep‐tissue imaging. Transmission electron microscopy images reveal that the average diameter of these luminescent nanoparticles is approximately 29 nm, and they contain multiple InGaP@ZnS QDs that have an average diameter between 4 and 5 nm. These new InGaP@ZnS–chitosan nanoparticles emit near the near IR region at 670 nm and are able to penetrate three times deeper into tissue (e.g., even through a mouse skull) while revealing a higher uptake efficiency into PC12 cells with a robust signal. Additionally, a cell viability assay demonstrates that these new fluorescent nanoparticles have good biocompatibility and stability with PC12 cells and neural cells. As a result, these near‐IR‐emitting nanoparticles can be used for real‐time and deep‐tissue examination of diverse specimens, such as lymphatic organs, kidneys, hearts, and brains, while leaving the tissue intact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.