Abstract

We report on the first InGaN quantum well laser diodes grown by molecular beam epitaxy (MBE). Devices were grown by gas-source MBE using ammonia as a source of nitrogen and elemental group III sources. The devices were grown on commercially available GaN template substrates. The lasers consist of a separate confinement heterostructure including an active region consisting of three In 0.1 Ga 0.9 N quantum wells with a nominal thickness of 2 nm. P-type doping of GaN and AlGaN cladding regions was obtained without the use of post-growth thermal annealing. The lasers were fabricated into a ridge-stripe geometry with ridge width of 5 pm and length of 500-1500 μm. Electron cyclotron resonance (ECR) dry-etching was used to fabricate the laser facets. Under pulsed current injection conditions, the lasers exhibit a room temperature threshold current density of 22 kA cm -2 emitting at 400 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call