Abstract

In this paper, a solution toward realizing color chromaticity stabilized InGaN red, green, and blue (RGB) light-emitting diode (LED) is proposed and demonstrated. The InGaN/GaN multiple quantum wells (play a key role in light emission from the LEDs and photodetection from the photodetectors (PDs). The spectral overlaps between the emission and absorption spectra are measured and the photocurrents of the PDs exhibit linear behavior with increasing LED driving currents. The solution involves the use of RGB chips with monolithically integrated PDs that detect the levels of light output from an individual chip in real time, whose photocurrent signals are fed to LED driver circuits that make use of the signal to provide a driving current that stabilizes the light output. Adoption of this feedback strategy results in CIE coordinates drifts of Δ(0.003, 0.005) over the 400 h duration of testing, proving to be an effective way of stabilizing color chromaticity from RGB LEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.