Abstract

Photonic crystal patterns on the indium tin oxide layer of an InGaN/GaN light-emitting diode are fabricated via nanosphere lithography in combination with dry etching. The silica spheres acting as an etch mask are self-assembled into a hexagonal closed-packed monolayer array. After etching, the photonic crystal (PhC) pattern is formed across the indium-tin-oxide (ITO) films so that the semiconductor layers are left intact and thus free of etch damages. Despite slight degradation to the electrical properties, the ITO-PhC light-emitting diodes (LEDs) exhibit enhancements of their optical emission power by as much as 64% over an as-grown LED. The optical performances and mechanisms of the photonic crystal LEDs are investigated with the aid of rigorous coupled wave analysis and finite-difference time-domain simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.