Abstract

We report on InGaN edge emitting laser diodes with a top metal electrode located beside the laser ridge. Current spreading over the ridge is achieved via a highly doped n+-type GaN layer deposited on top of the structure. The low sheet resistance of the n+-GaN layer ensures excellent lateral current spreading, while carrier injection is confined all along the ridge thanks to current tunneling at the interface between the n+-GaN top layer and the p++-GaN layer. Continuous-wave lasing at 400 nm with an output power of 100 mW is demonstrated on uncoated facet devices with a threshold current density of 2.4 kA·cm−2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call