Abstract
GaN nanowires and InGaN disk heterostructures are grown on an amorphous SiO2 layer by a plasma-assisted molecular beam epitaxy. Structural studies using scanning electron microscopy and high-resolution transmission electron microscopy reveal that the nanowires grow vertically without any extended defect similarly to nanowires grown on Si. The as-grown nanowires have an intermediate region consisting of Ga, O, and Si rather than SiNx at the interface between the nanowires and SiO2. The measured photoluminescence shows a variation of peak wavelengths ranging from 580 nm to 635 nm because of non-uniform indium incorporation. The nanowires grown on SiO2 are successfully transferred to a flexible polyimide sheet by Au-welding and epitaxial lift-off processes. The light-emitting diodes fabricated with the transferred nanowires are characterized by a turn-on voltage of approximately 4 V. The smaller turn-on voltage in contrast to those of conventional nanowire light-emitting diodes is due to the absence of an intermediate layer, which is removed during an epitaxial lift-off process. The measured electroluminescence shows peak wavelengths of 610-616 nm with linewidths of 116-123 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.