Abstract

InGaN-based light-emitting diodes (LEDs) with nanoporous microhole array (NMA) structures were fabricated through photoelectrochemical wet oxidation and oxide-removing processes. The average size of the nanoporous structure at the microhole regions was measured at 60-80 nm. Forward voltages were measured at 3.47 and 3.68 V for a standard LED (ST-LED) and an NMA-LED, respectively, the latter caused by the higher contact resistance at the nanoporous GaN:Mg surface. The light output power of the NMA-LED had a 40.5% enhancement compared with the ST-LED on nonencapsulated LEDs in chip form. The higher light scattering process occurred at the NMA structure on the GaN:Mg surface and at the ringlike patterns on the GaN:Si structure. The results were a higher light extraction efficiency and a larger divergent angle in the NMA-LED.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.