Abstract

Technological paradigm shifts often come with a newly emerging industry that seeks a viable infrastructure deployment plan to compete against established competitors. Such phenomenon has been repeatedly seen in the field of transportation systems, such as those related to the booming bioenergy production, among others. We develop a game-theoretic modeling framework using a continuum approximation scheme to address the impacts of competition on the optimal infrastructure deployment. Furthermore, we extend the model to incorporate uncertainties in supply/demand and the risk of facility disruptions. Analytical properties of the optimal infrastructure system are obtained, based on which fast numerical solution algorithms are developed. Several hypothetical problem instances are used to illustrate the effectiveness of the proposed algorithms and to quantify the impacts of various system parameters. A large-scale biofuel industry case study for the U.S. Midwest is conducted to obtain additional managerial insights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.