Abstract

AbstractAfter the M 9.0 Tohoku‐oki earthquake in 2011, strong deformation of ionogram echo traces, forming multiple cusp signatures (MCSs), were observed at three stations 790–1880 km from the epicenter. The vertical structure of the ionospheric disturbances was determined by true height analysis and compared with broadband seismograph records at stations close to the ionosondes. These ionospheric disturbances were caused by vertically propagating acoustic waves excited by the up/down ground motion of seismic waves. Numerical simulations have shown that acoustic waves with a period of 15–40 s and amplitude of order 1 mm/s at the ground level were sufficient to create MCSs as sharp as those observed. These acoustic wave parameters are consistent with the seismic records if the motion of the air mass on the ground level is assumed to be the same as the ground motion. The travel time diagram of the seismic records along the line connecting the epicenter and ionosondes showed that the first MCS ionogram detected at each station was caused by P waves, while the others were caused by Rayleigh waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.