Abstract

AbstractWe present the results of infrasonic interferometry applied to microbaroms, obtained from ambient noise. For this purpose the “Large Aperture Infrasound Array” (LAIA) was used, which has been installed in the Netherlands. Preprocessing appeared to be an essential step in enhancing the microbarom signals from ambient noise that strongly influences the results of the interferometry. Both the state of the atmosphere and the noise characteristics are taken into account to assess the strength of the cross correlation. The delay time of the microbaroms between two stations is determined through cross correlating the recordings. By calculating the cross correlations between all 55 station pairs of LAIA, we are able to find the delay time of microbaroms up to a interstation distance of 40.6 km. Using the strength of the cross correlations, we are able to show that the coherence of the microbaroms along the direction of arrival is higher than orthogonal to it. A comparison of the atmospheric state, with a cross correlation, over a period of 10 days, reveals that the infrasound propagation over the array is correlated with the tropospheric temperature and wind. Based on the cross correlations between the three closest stations, we are able to passively estimate the effective sound speed and the wind speed as a function of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.