Abstract

The 355 nm photodissociation of Cl(2) trapped in a solid parahydrogen matrix at 2 K leads to the formation of isolated Cl photofragments. At these low temperatures (k(B)T approximately 1.4 cm(-1)), the Cl atoms can not react with the parahydrogen matrix since the reaction Cl + H(2)(v = 0, j = 0) --> HCl(v = 0, j = 0) + H is endothermic by 360 cm(-1). Irradiation of the Cl atom doped parahydrogen solid with broadband infrared radiation from 4000 cm(-1) to 5000 cm(-1) induces reaction of atomic Cl with the parahydrogen matrix to form HCl. The infrared-induced chemistry is attributed to solid parahydrogen absorptions that lead to the creation of vibrationally excited H(2)(v = 1), which supply the necessary energy to induce reaction. The kinetics of this low temperature infrared-induced reaction is studied using Fourier Transform infrared spectroscopy of the HCl reaction product. The HCl formation kinetics is first-order and the magnitude of the effective rate constant for the infrared-induced reaction depends on the properties of the near infrared radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call