Abstract

Tests and calibration of sprayers have been considered a very important task for chemicals use reduction in agriculture and for improvement of plant phytosanitary protection. A reliable, affordable and easy-to-use method to observe the distribution in the field is required and the infrared thermoimage analysis can be considered as a potential method based on non-contact imaging technologies. The basic idea is that the application of colder water (10 °C less) than the leaves surface makes it possible to distinguish and measure the targeted areas by means of a infrared thermoimage analysis based on significant and time persistent thermal differences. Trials were carried out on a hedge of Prunus laurocerasus, 2.1 m height with an homogenous canopy. A trailed orchard sprayer was employed with different spraying configurations. A FLIR TM (S40) thermocamera was used to acquire (@ 50 Hz) thermal videos, in a fixed position, at frame rate of 10 images/s, for nearly 3 min. Distribution quality was compared to the temperature differences obtained from the thermal images between pre-treatment and post-treatment (ΔT)., according two analysis: time-trend of ΔT average values for different hedge heights and imaging ΔT distribution and area coverage by segmentation in k means clustering after 30 s of spraying. The chosen spraying configuration presented a quite good distribution for the entire hedge height with the exclusion of the lower (0-1 m from the ground) and the upper part (>1.9 m). Through the image segmentation performed of ΔT image by k-means clustering, it was possible to have a more detailed and visual appreciation of the distribution quality among the entire hedge. The thermoimage analysis revealed interesting potentiality to evaluate quality distribution from orchards sprayers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call