7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1007/0-306-46948-0_30
Copy DOIPublication Date: Jan 1, 2000 | |
Citations: 2 | License type: cc-by-nc |
The present paper aims to illustrate three advantages of infrared thermography as a non destructive, real-time and non-contact technique to mechanically characterise solid materials. It permits observation of the macrostructural aspects of. thermoplasticity describing damage and failure processes in diverse and various engineering materials and their components subjected to monotonous, cyclic or vibratory loading. It usefully suggests the definition of a threshold of acceptable damage TAD for materials related to sport equipment such as leather shoe, leather-like composites or sail synthetics. Particularly in case of metallic products or automotive components subjected to fatigue loading, this newly proposed method could evaluate in a non-destructive manner the fatigue limit FL in a very short time compared to traditional fatigue testing techniques that are much more time-consuming and excessively expensive. In addition owing to the thermomechanical coupling, infrared thermography readily describes the damage location, the dissipative regime and the evolution of structural failure.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.