Abstract
This paper deals with an inverse problem arising in infrared (IR) thermography for buried landmine detection. It is aimed at using a thermal model and measured IR images to detect the presence of buried objects and characterize them in terms of thermal and geometrical properties. The inverse problem is mathematically stated as an optimization one using the well-known least-square approach. The main difficulty in solving this problem comes from the fact that it is severely ill posed due to lack of information in measured data. A two-step algorithm is proposed for solving it. The performance of the algorithm is illustrated using some simulated and real experimental data. The sensitivity of the proposed algorithm to various factors is analyzed. A data processing chain including anomaly detection and characterization is also introduced and discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.