Abstract

Deformation of steel parts is accompanied by either heating or cooling of particular zones depending on deformation mechanism. The use of infrared thermographic equipment allows analyzing spatial/temporal temperature distributions on the surface of steel parts thus allowing the evaluation of heat release caused by deformation in bulk material. Determination of stressed state in critical parts by analyzing infrared thermograms can be most simply conducted for components subjected to uniaxial tension–compression. The paper describes some potentials and problems of nondestructive testing of steel parts and constructions based on the analysis of heat release caused by deformation. By analyzing this methodology, it is possible to better evaluate the life expectancy of critical parts in steel structures (components of offshore oil platforms, seismic-resistant buildings, frames of large mining trucks, etc.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.