Abstract

To investigate the applicability of infrared thermography technique as a method for obtaining dynamic plastic deformation in polycarbonate, an infrared thermography experiment has been performed under four different loading rates. Three-point bending tests of polycarbonate have been conducted to evaluate thermal evolution obtained via infrared thermography in order to detect capabilities of plastic deformation. And photoelastic tests under the same experimental conditions were carried out to verify the reliable of experimental results of infrared thermography. The stability of the plastification region demonstrated the validity of infrared thermography as an approach for describing the dynamic plastic deformation when used on complex structures. Meanwhile, the conversion coefficient β of plastic work to heat at different loading rates have been investigated, and the results shown the β increases in 0.2–0.7 with plastic deformation. The photoelastic fringe patterns further verified the generation and propagation of plastification region. This research based on two basic tests, providing a useful suggestions for complex structure materials to evaluate the plastic deformation where middle wave infrared thermography was applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.