Abstract

An infrared target tracking framework is presented that consists of three main parts: mean shift tracking, its tracking performance evaluation, and position correction. The mean shift tracking algorithm, which is a widely used kernel-based method, has been developed for the initial tracking for its efficiency and effectiveness. A performance evaluation module is applied for the online evaluation of its tracking performance with a kernel- based metric to unify the tracking and performance metric within a kernel-based tracking framework. Then the tracking performance evaluation result is input into a controller in which a decision is made whether to trigger a position correction process. The position correction module employs a matching method with a new eigenvalue-based similarity measure computed from a local complexity degree weighted covariance matrix. Experimental results on real-life infrared image sequences are presented to demonstrate the efficacy of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.