Abstract

A robust and effective small dim object detection algorithm is the key to the success of an infrared tracking system. To help solve practical tracking problems, a detecting algorithm based on local contrast method (LCM) and Lucas–Kanade method (LK) is put forward. Firstly, the local contrast map of the input image is obtained using the local contrast measure which measures the dissimilarity between the current location and its neighborhoods. In this way, target signal enhancement and background clutter suppression are achieved simultaneously. Secondly, an adaptive threshold is applied to extract the suspected object regions. Finally, the central points of obtained regions are used as characteristic points, then LK optical flow algorithm to calculate optical flow at these points, and through the instantaneous velocity calculation and selection targets are detected. The experimental result shows that this method works perfectly and can effectively detect infrared targets under complex backgrounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.