Abstract

Infrared (IR) imaging systems with low-density focal plane arrays produce images with poor spatial resolution. To address this limitation, super-resolution (SR) algorithms can be applied on IR-low resolution (LR) images. In this paper, we present a new SR technique based on the multi-scale saliency detection and the residuals learned by the deep convolutional neural network (CNN) in the wavelet domain (DWCNN). The input LR image is processed in the transformed domain by applying 2D discrete wavelet transform. It decomposes an image into its low-frequency and high-frequency subbands. The multi-scale saliency detection is used to extract small scale and large scale salient feature maps from the bicubic upscaled LR image. These maps are incorporated in the high-frequency subbands of the LR image. Furthermore, the low-frequency and high-frequency subands are refined using the residuals learned by the DWCNN in training phase. The proposed algorithm is compared with the conventional and state-of-the-art SR methods. Results indicate that our method yields good reconstruction quality with high peak signal to ratio, structural similarity and low blur indices. Besides, our method requires less computational time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.