Abstract

Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy was used to study the adsorption of charged silica particles onto TiO(2) particles coated with anionic sodium polyacrylate (NaPA) or cationic poly(diallyldimethylammonium) chloride (PDADMAC). To the best of our knowledge, this is the first time that IR spectroscopy has been used to study the interaction of a polymer layer on one particle with a second different particle. The results show that, once adsorbed on the TiO(2) particle, the PDADMAC or the NaPA does not transfer to the silica particles. In the case of NaPA coated TiO(2), positively charged silica particles deposit on the TiO(2) and this is accompanied by a change in the relative intensities of the bands due to COOH and COO(-) groups. From this change in band intensity, it is calculated that only approximately 6% of the COO(-) groups located in the loops and tails bind to the silica particle. This shows that the polymer bridges the two particles through an electrostatic interaction with the outer COO(-) groups. Similarly, in the case of the TiO(2) particles coated with PDADMAC, negatively charged silica deposits on the TiO(2) and this is accompanied by an increase in intensity of the symmetric bending mode of the (+)N(CH(3))(3) group. This change in band intensity arises from the binding of these cationic sites of the polymer to the negative surface sites on the silica.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call