Abstract
Phosphoglycerate kinase (PGK) catalyzes a reversible phospho-transfer reaction between ATP and 3-phosphoglycerate (3-PG) that is thought to require a hinge-bending motion in the protein that brings two separate substrate-binding domains together. We have used difference infrared spectroscopy to better understand the conformational changes that are unique to the PGK-ATP-3-PG complex. Caged nucleotides (caged-ADP and caged-ATP) were used to initiate nucleotide binding to PGK or PGK-3-PG complexes. The difference spectra include those of PGK-ATP minus PGK, PGK-3-PG-ATP minus PGK-3-PG, PGK-3-PG-ADP minus PGK-3-PG, and PGK-ADP minus PGK. The resulting spectra were compared in attempts to identify bands associated with each PGK complex. In addition, complementary activity assays were performed in the presence of caged-nucleotides. While PGK activity decreased in the presence of caged-ADP, the activity was not influenced by the addition of caged-ATP. The activity assay results suggest that the caged-ADP may interact with PGK substrate binding site(s) and inhibit phospho-transfer. Therefore, additional difference infrared nucleotide exchange experiments were used to isolate the differences between ADP and ATP binding to PGK. Difference FTIR spectra obtained on PGK-nucleotide-3-PG complexes show distinct bands that may result from amino acid side chains as well as structural changes in the hinge region and/or increased interactions such as salt bridges forming between the two domains. The infrared data obtained on the active ternary complexes show evidence of changes in alpha-helix and beta-structures as well as signals consistent with Arg, Asn, His, Lys, Asp, Glu, and additional side chains that are uniquely perturbed in the active ternary complex as compared to other PGK complexes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.