Abstract

Ultraviolet irradiation of a rigid 7 K argon matrix containing alkali or alkaline earth metal atoms and NO(2) isolated from each other by one or two layers of argon forms N(2)O(2)2-dianions insulated from two M(+) cations by argon atoms, and visible photolysis reverses this electron-transfer process likely involving the N(2)O(2)(-) anion intermediate. The isolated N(2)O(2)2- dianion is identified from isotopic substitution and isotopic mixtures, which show that the new 1028.5 cm(-1) metal independent absorption involves two equivalent NO subunits. DFT calculations predict a strong 1078.1 cm(-1) fundamental for the Li(NO)(2)Li molecule and isotopic frequency ratios in excellent agreement with the observed values, which provides a model for the matrix dianion system. The spectrum of solid Na(2)N(2)O(2) exhibits a 1030 cm(-1) infrared band, which strongly supports the present N(2)O(2)2- dianion assignment. The electrostatic stabilization of N(2)O(2)2-, which is probably unstable in the gas phase, is made possible by metal cations separated by one or two insulating layers of argon in the rigid 7 K matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call