Abstract

The addition reaction of chlorine with ethylene (C(2)H(4)) is expected to proceed via a free radical intermediate, the 2-chloroethyl radical, however, this intermediate has not been previously observed spectroscopically. Irradiation at 365 nm of a co-deposited mixture of Cl(2), C(2)H(4), and p-H(2) at 3.2 K produces a series of new lines in the infrared spectrum. A strong line at 664.0 cm(-1) and weaker lines at 562.1, 1069.9, 1228.0, 3041.1 and 3129.3 cm(-1) are concluded to be due to a single carrier based on their behavior upon subsequent annealing to 4.5 K and secondary irradiation at 254 and 214 nm. The positions and intensities of these lines agree with the MP2/aug-cc-pVDZ predicted vibrational spectrum of the 2-chloroethyl (˙CH(2)CH(2)Cl) radical. In order to confirm this assignment, isotopic experiments were performed with C(2)D(4) and t-C(2)H(2)D(2) and the corresponding infrared bands due to the deuterium isotopomers of this radical (˙CD(2)CD(2)Cl and ˙C(2)H(2)D(2)Cl) have been observed. A final set of experiments were performed following irradiation of the Cl(2)/C(2)H(4)/p-H(2) mixture at 365 nm, in which the matrix was irradiated with filtered infrared light from a globar source, which has been shown to induce reactions between isolated Cl atoms and matrix H(2) to produce HCl and H atoms. In these experiments, the major products observed were HCl, the ethyl radical (˙C(2)H(5)) and ethyl chloride (C(2)H(5)Cl) and the possible mechanisms for the formation of these species are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call